ITIL之“变更管理”

BKJIA.com
综合报道】那么对于现有客户,是先按照IT运维理念去架构,还是按照管理的角度先去做监测?对于这个疑问,SiteView
ECC项目经理赵琛宇认为,脚踏实地、遵循客观规律、符合实际应用环境最好。

首先要说明的是ITIL的变更是指“上线系统的变更”,而不是指系统建设的变更。

大数据如何监测管理现代农业?

奥门威尼斯网址 1

奥门威尼斯网址 2

IT运维管理系统之说,来源于ITTL,来源与CMDB——核心配置管理数据库。CMDB的构建,必须依赖于基层的管理力度,必须把所有的网络设备、服务器、所有PC的运行状态,都监控齐全后,才能构建CMDB;若没齐全,就无法把一个故障流程弄成一个ITIL。ITIL从V1.0到V2.0、3.0从一大厚本儿逐步到一薄本儿,再次证明它只是一个理论,是一个概念,它只能指导客户要达到一个什么效果,而不能告诉客户如何去做。比如,从媒体的视频直播间到天安门,我们能告诉您天安门在哪儿,天安门如何的壮观;但不能告诉客户如何到达天安门。

ITIL的变更的流程如下:

奥门威尼斯网址 3

随着海量信息的爆发,农业跨步迈入大数据时代。如同其他行业的大数据应用,通过技术手段获取、收集、分析数据,能够有效地解决农业生产和市场流通等问题。

因为每个客户的网络环境、管理流程、管理体制等都各不相同。ITIL是个好东西,但一定要结合实际。采用基于ITIL的系统,国内国外都有很多案例,失败的也很多。造成失败的原因主要有两个:一是原有架构不适合变更;二是管理的力度达不到,各环节协调不上来。另,客户软件的使用习惯也是各不相同,是导致失败的原因之一;软件本身,若底层并不是完全成熟,不能构建CMDB,也会造成失败。

奥门威尼斯网址 4

未来人工智能、数据挖掘、机器学习、数学建模、深度学习等技术将被广泛应用,我国农产品监测预警信息处理和分析将向着系统化、集成化、智能化方向发展。

在大数据的推动下,农业监测预警工作的思维方式和工作范式发生了根本性的变化,我国农产品监测预警信息处理和分析将向着系统化、集成化、智能化方向发展。本期嘉宾将带您了解大数据时代下,农产品监测预警如何运行以及未来面临的机遇。

现在国内ITIL是一个初步培育期和探索期,并不成熟。国外也是从这个阶段过来,国外也不是立马就上一个体系架构,它都需要一个过程。游龙科技建议先上一套管理思想,一个可执行的流程和思想,它是非电子化而是纸质化。用户可以先找一家咨询公司,将纸质化的管理思想走几遍,各环节都认可都磨合好了,再选择一个适用的ITSM。

整个变更管理在实际操作中有几个注意点:

许世卫
中国农业科学院农业监测预警创新团队首席科学家、农业部农业信息服务技术重点实验室主任、农业部市场预警专家委员会秘书长

大数据走进农业领域

奥门威尼斯网址,数据库专家、图灵奖得主吉姆·格雷提出,数据密集型计算成为继试验科学、理论科学、计算科学之外的科学研究第四范式。大数据被学术界正式提出始于2008年9月《自然》杂志发表的“Big
Data”系列专题文章,介绍了大数据应用所带来的挑战和机遇。

人们围绕研究数据的海量增加展开讨论。2011年,《科学》杂志刊登“Dealing
with Data”专题,指出分析数据的能力远落后于获取数据的能力。

2012年3月,美国政府公布了“大数据研发计划”,基于大数据推动科研和创新。在我国,2012年5月香山科学会议第424次会议以“大数据”为主题,认为大数据时代已经来临,大数据已成为各行业共同面临的大问题。同年11月,香山科学会议第445次会议以“数据密集时代的科研信息化”为主题,讨论“大数据”时代的科研信息化问题。

这些事件都标志着“大数据”走入我们的生活。那么,大数据在农业中的应用如何?许世卫表示,“农业大数据是大数据在农业领域的应用和延展,是开展农产品监测预警工作的重要技术支撑。”

在他看来,农业大数据不仅保留了大数据自身具有的规模巨大、类型多样、价值密度低、处理速度快、精确度高和复杂度高等基本特征,还使得农业内部的信息流得到了延展和深化。

数据作为一种战略资源,可以有效地解决农业生产面临的复杂问题,从数据的获取、收集到分析,能够事半功倍地解决农业生产问题。

许世卫举例道,如通过传感器、作物本体检测手段,获取了土壤中的氮磷钾肥力等大量数据,对数据进行分析整理后可以有效指导农业生产中的施肥量、施肥时间等问题,进行合理规划,得出最合适的投入量,从而提高生产效率。

再如,大数据能够提前预测到未来市场的供给需求,可以有效降低生产投入并采取适当的措施进行智能化生产,对平抑物价起到调节作用。

IT管理,其本质在于管理学,而管理学首要要义是:无法管理不能监测的数据。因此,首先,要采集数据;其次进行数据挖掘和展现。不同的客户有不同的需求,为此游龙提供给用户自定义报表功能,从管理者角度、一线运维人员角度等不同角度,来覆盖客户所有需求。同时,用户可以根据自身需求进行报表个性化定制,用户也可以通过EXCEL的公式进行报表直接调用。其中,有一些公式是SiteView
ECC自有的公式,输入公式即可直接调用、展现。

1、
现存的企业中,变更咨询委员会(CAB)可能只有信息化主管一个人,但对于对整个系统技术不是很熟悉的主管来说,一个人的CAB并不合适,最好是由各个应
用系统维护的技术人员和数据库管理人员共同组成CAB,在变更提出后,进行集中讨论,以讨论是否会引发其他系统故障,从而确定是否执行变更;

随着海量信息的爆发,农业跨步迈入大数据时代。如同其他行业的大数据应用,通过技术手段获取、收集、分析数据,能够有效地解决农业生产和市场流通等问题。

大数据是监测预警的基础支撑

许世卫指出,农业大数据的数据获取、采集渠道和应用技术手段,无法通过人工调查得到数据,而需要依靠土壤传感器、环境传感器、作物长势生命本体传感器等手段支撑。由于技术更新、成本下降,使得农业有关生产市场流通等数据获取能力大幅提升。

“大数据使得农业进入全面感知时代,用总体替代样本成为可能;农业生产获得更多依靠数据的支撑,从此进入智慧农业时代;大量的数据可以优化生产布局,优化安排生产投入;大数据时代下,市场更有利于产销对接,在消费环节减少浪费以及减少产后损失。”许世卫说。

此外,大数据给农业的管理也带来变化。过去的农业管理主要依靠行政手段指导和安排生产,大数据有利于分析提取特征、总结趋势,通过市场信号的释放引导市场进而引导生产。

许世卫表示,农业大数据是现代化农业的高端管理工具。所谓监测预警就是监测数据,贯穿于农产品从生产到流通到消费到餐桌整个过程的产品流、物资流、资金流、信息流,使产销匹配、生产和运输匹配、生产和消费匹配。

农产品监测预警也是对农产品生产、市场运行、消费需求、进出口贸易及供需平衡等情况进行全产业链的数据采集、信息分析、预测预警与信息发布的全过程。

农产品监测预警还是现代农业稳定发展最重要的基础,大数据是做好监测预警工作的基础支撑。农业发展仍然面临着多重不安全因素,急需用大数据技术去突破困境。

这主要体现在:农业生产风险增加,急需提前获取灾害数据,早发现、早预警;农产品市场波动加剧,“过山车”式的暴涨暴跌时有发生,急需及时、全面、有效的信息,把握市场异常,稳定市场形势;食物安全事件频发,急需全程监管透明化,惩戒违规行为。

可以说,农产品监测预警对大数据的需求是迫切的。

综合报道】那么对于现有客户,是先按照IT运维理念去架构,还是按照管理的角度先去做监测?对于这个疑问,SiteView
ECC项目经理赵…

2、
对于通常的变更,如增加新用户。根据实际情况,确认是否上报CAB。一般情况,由变更人员执行即可,例如ERP的维护人员可以根据需要添加和删减用户,但
对于企业关键用户,如上级部门、关联部门等的请求,一般要经过CAB尤其是主管的认可,这是为了确保信息的查阅级别,以确保企业里层级的体现和信息的安
全。尤其在权力文化比较重的企业尤其注意这一点。

在大数据的推动下,农业监测预警工作的思维方式和工作范式发生了根本性的变化,我国农产品监测预警信息处理和分析将向着系统化、集成化、智能化方向发展。本期嘉宾将带您了解大数据时代下,农产品监测预警如何运行以及未来面临的机遇。

农产品监测效果显著

农产品监测效果显著,大数据功不可没,主要体现在监测对象和内容更加细化、数据获取更加快捷、信息处理分析更加智能、数据服务更加精准等。

随着农业大数据的发展,数据粒度更加细化,农产品信息空间的表达更加充分,信息分析的内容和对象更加细化。

农业系统是一个包含自然、社会、经济和人类活动的复杂巨系统,在其中的生命体实时的“生长”出数据,呈现出生命体数字化的特征。农业物联网、无线网络传输等技术的蓬勃发展,极大地推动了监测数据的海量爆发,数据实现了由“传统静态”到“智能动态”的转变。

在大数据背景下,数据存储与分析能力将成为未来最重要的核心能力。未来人工智能、数据挖掘、机器学习、数学建模、深度学习等技术将被广泛应用,我国农产品监测预警信息处理和分析将向着系统化、集成化、智能化方向发展。

如中国农产品监测预警系统(China Agricultural Monitoring and Early
Warning
System,CAMES)已经在机理分析过程中实现了仿真化与智能化,做到了覆盖中国农产品市场上的953个主要品种,可以实现全天候即时性农产品信息监测与信息分析,用于不同区域不同产品的多类型分析预警。

在大数据的支撑下,智能预警系统通过自动获取农业对象特征信号,将特征信号自动传递给研判系统。研判系统通过对海量数据自动进行信息处理与分析判别,自动生成和显示结论结果,发现农产品信息流的流量和流向,在纷繁的信息中抽取农产品市场发展运行的规律。最终形成的农产品市场监测数据与深度分析报告,将为政府部门掌握生产、流通、消费、库存和贸易等产业链变化、调控稳定市场提供重要的决策支持。

3、变更管理员应负责推动整个变更管理的执行过程,对于CAB的拖延,应有义务及时提醒,否则最终板子会打在变更管理员的身上。

数据库专家、图灵奖得主吉姆:格雷提出,数据密集型计算成为继试验科学、理论科学、计算科学之外的科学研究第四范式。大数据被学术界正式提出始于2008年9月《自然》杂志发表的“Big
Data”系列专题文章,介绍了大数据应用所带来的挑战和机遇。

4、变更执行后,应当注意跟踪一段时间,变更管理员向用户做定期回访,以确认变更执行确实有效以及没有引发其他的系统事故。

人们围绕研究数据的海量增加展开讨论。2011年,《科学》杂志刊登“Dealing
with Data”专题,指出分析数据的能力远落后于获取数据的能力。

5、正式的系统变更操作,应安排在系统非工作时间进行,以腾出时间处理万一出现的故障。(转帖)

2012年3月,美国政府公布了“大数据研发计划”,基于大数据推动科研和创新。在我国,2012年5月香山科学会议第424次会议以“大数据”为主题,认为大数据时代已经来临,大数据已成为各行业共同面临的大问题。同年11月,香山科学会议第445次会议以“数据密集时代的科研信息化”为主题,讨论“大数据”时代的科研信息化问题。

E8.ITSM助力业务可持续运行、为业务提供可靠的技术支持、提升用户满意度。。。

这些事件都标志着“大数据”走入我们的生活。那么,大数据在农业中的应用如何?许世卫表示,“农业大数据是大数据在农业领域的应用和延展,是开展农产品监测预警工作的重要技术支撑。”

在他看来,农业大数据不仅保留了大数据自身具有的规模巨大、类型多样、价值密度低、处理速度快、精确度高和复杂度高等基本特征,还使得农业内部的信息流得到了延展和深化。

数据作为一种战略资源,可以有效地解决农业生产面临的复杂问题,从数据的获取、收集到分析,能够事半功倍地解决农业生产问题。

许世卫举例道,如通过传感器、作物本体检测手段,获取了土壤中的氮磷钾肥力等大量数据,对数据进行分析整理后可以有效指导农业生产中的施肥量、施肥时间等问题,进行合理规划,得出最合适的投入量,从而提高生产效率。

再如,大数据能够提前预测到未来市场的供给需求,可以有效降低生产投入并采取适当的措施进行智能化生产,对平抑物价起到调节作用。

大数据是监测预警的基础支撑

许世卫指出,农业大数据的数据获取、采集渠道和应用技术手段,无法通过人工调查得到数据,而需要依靠土壤传感器、环境传感器、作物长势生命本体传感器等手段支撑。由于技术更新、成本下降,使得农业有关生产市场流通等数据获取能力大幅提升。

“大数据使得农业进入全面感知时代,用总体替代样本成为可能;农业生产获得更多依靠数据的支撑,从此进入智慧农业时代;大量的数据可以优化生产布局,优化安排生产投入;大数据时代下,市场更有利于产销对接,在消费环节减少浪费以及减少产后损失。”许世卫说。

此外,大数据给农业的管理也带来变化。过去的农业管理主要依靠行政手段指导和安排生产,大数据有利于分析提取特征、总结趋势,通过市场信号的释放引导市场进而引导生产。

许世卫表示,农业大数据是现代化农业的高端管理工具。所谓监测预警就是监测数据,贯穿于农产品从生产到流通到消费到餐桌整个过程的产品流、物资流、资金流、信息流,使产销匹配、生产和运输匹配、生产和消费匹配。

农产品监测预警也是对农产品生产、市场运行、消费需求、进出口贸易及供需平衡等情况进行全产业链的数据采集、信息分析、预测预警与信息发布的全过程。

农产品监测预警还是现代农业稳定发展最重要的基础,大数据是做好监测预警工作的基础支撑。农业发展仍然面临着多重不安全因素,急需用大数据技术去突破困境。

这主要体现在:农业生产风险增加,急需提前获取灾害数据,早发现、早预警;农产品市场波动加剧,“过山车”式的暴涨暴跌时有发生,急需及时、全面、有效的信息,把握市场异常,稳定市场形势;食物安全事件频发,急需全程监管透明化,惩戒违规行为。

可以说,农产品监测预警对大数据的需求是迫切的。

农产品监测效果显著,大数据功不可没,主要体现在监测对象和内容更加细化、数据获取更加快捷、信息处理分析更加智能、数据服务更加精准等。

随着农业大数据的发展,数据粒度更加细化,农产品信息空间的表达更加充分,信息分析的内容和对象更加细化。

农业系统是一个包含自然、社会、经济和人类活动的复杂巨系统,在其中的生命体实时的“生长”出数据,呈现出生命体数字化的特征。农业物联网、无线网络传输等技术的蓬勃发展,极大地推动了监测数据的海量爆发,数据实现了由“传统静态”到“智能动态”的转变。

在大数据背景下,数据存储与分析能力将成为未来最重要的核心能力。未来人工智能、数据挖掘、机器学习、数学建模、深度学习等技术将被广泛应用,我国农产品监测预警信息处理和分析将向着系统化、集成化、智能化方向发展。

如中国农产品监测预警系统(China Agricultural Monitoring and Early
Warning
System,CAMES)已经在机理分析过程中实现了仿真化与智能化,做到了覆盖中国农产品市场上的953个主要品种,可以实现全天候即时性农产品信息监测与信息分析,用于不同区域不同产品的多类型分析预警。

在大数据的支撑下,智能预警系统通过自动获取农业对象特征信号,将特征信号自动传递给研判系统。研判系统通过对海量数据自动进行信息处理与分析判别,自动生成和显示结论结果,发现农产品信息流的流量和流向,在纷繁的信息中抽取农产品市场发展运行的规律。最终形成的农产品市场监测数据与深度分析报告,将为政府部门掌握生产、流通、消费、库存和贸易等产业链变化、调控稳定市场提供重要的决策支持。

(整理自中国农科院官方微信公众号“农科专家在线”,感谢中国农科院李海燕、侯丹丹、陈莹对本文的贡献)

《中国科学报》 (2017-11-29 第6版 科研)

发表评论

电子邮件地址不会被公开。 必填项已用*标注